POST FILTER IONIZED CALCIUM LEVELS WITH DILUTE REGIONAL CITRATE **ANTICOAGULATION: DO WE NEED TO FOLLOW THEM?** Rajesh Speer, Pharm. D., Dmitri Sychev M.D., Ashita Tolwani, M.D. University of Alabama at Birmingham, Birmingham, AL, U.S.A.

INTRODUCTION

Although regional citrate anticoagulation (RCA) with continuous venovenous hemodiafiltration (CVVHDF) has been shown to be safe and effective, it requires intensive monitoring of ionized calcium (iCa) levels every 6 hours from the patient as well as the circuit. At the University of Alabama at Birmingham (UAB), CVVHDF is performed with a 0.5% dilute citrate solution that serves as both an anticoagulant and replacement fluid (RF). Post filter iCa levels are checked every 6 hours and citrate adjusted to maintain a post filter iCa level of < 0.5 mmol/L. The purpose of this study was to determine if measuring post filter iCa levels every 6 hours are necessary with the typical citrate RF and blood flow rate ranges used at UAB.

METHODS

This is a prospective analysis of post filter iCa levels in 10 critically ill patients using pre-dilution CVVHDF. Post filter iCa levels were checked at varying combinations of citrate RF ranges of 1500 to 2500 ml/hr, dialysate ranges of 1500 to 2500 ml/hr, and blood flow rate ranges of 150 to 200 ml/min. Patient demographics, electrolytes, as well as dialysate parameters were reviewed.

Post filter iCa levels remained <0.5 mmol/L for all 10 patients with the various combinations of blood citrate RF, dialysate, and blood flow rates. See Tables 1 and 2. Table 1:

Blood	Citrate and Dialysate Rates (ml/hr) with Corresponding Post Filter iCa (mmol/L)									
Flow (ml/min)	1500/1500	1500/2000	1500/2500	2000/2500	2000/2000	2000/1500	2500/1500	2500/2000	2500/2500	
200	0.41	0.41	0.39	0.33	0.30	0.31	<0.25	<0.25	0.27	
200	0.48	0.36	0.36	0.29	0.27	0.25	<0.25	<0.25	<0.25	
200	0.37	0.38	0.36	0.29	0.28	0.29	<0.25	<0.25	0.42	
200	0.54	0.40	0.44	0.31	0.31	0.31	<0.25	0.31	<0.25	
200	0.43	0.45	0.40	0.32	0.32	0.30	<0.25	<0.25	<0.25	
Mean	0.446	0.40	0.39	0.308	0.296	0.292	<0.25	<0.25	<0.25	

Table 2:

Blood	Citrate and Dialysate Rates (ml/hr) with Corresponding Post Filter iCa (mmol/L)									
Flow				•						
(mi/min)	1500/1500	1500/2000	1500/2500	2000/2500	2000/2000	2000/1500	2500/1500	2500/2000	2500/2500	
150	0.31	0.29	0.35	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	
150	0.29	0.28	0.26	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	
150	0.32	0.33	0.30	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	
150	0.32	0.34	0.35	<0.25	0.32	<0.25	<0.25	<0.25	<0.25	
150	0.27	0.25	0.27	0.31	<0.25	0.36	<0.25	<0.25	<0.25	
Mean	0.302	0.298	0.306	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	

There appears to be limited clinical benefit to follow post filter iCa every 6 hours when using the UAB 0.5% dilute RCA protocol for CVVHDF. Unless a patient has clotting problems on CVVHDF, we recommend post filter iCa can perhaps be changed from every 6 hours to once a day reducing not only complexity of citrate use with CRRT but also decreasing labor and cost.

RESULTS

CONCLUSIONS

