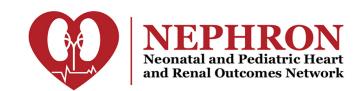


Solutions & Fluid Balance

musc Children's Health Medical University of South Carolin

David Selewski, MD, MS Associate Professor, Department of Pediatrics Medical Director, Acute Dialysis Units Medical University of South Carolina

Disclosures


• Consultation for adjudication for Bioporto.

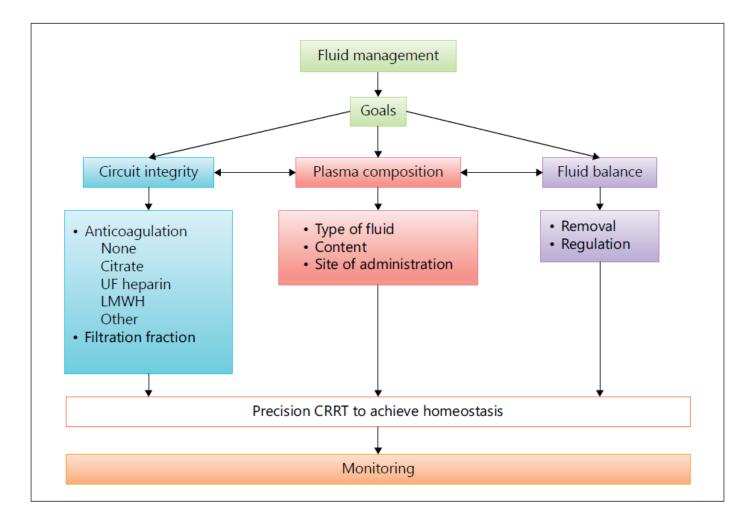
The Prospective Pediatric Acute Kidney Injury Research Group

Objectives

- Review the concept of precision fluid management in CRRT
- Understand terminology and characteristics of the solutions available for performing CRRT
- Understand the timing, quantity, and practical issues of fluid removal on CRRT

ADQI Consensus

Blood Purif 2016;42:266–278 DOI: 10.1159/000448528 Published online: August 26, 2016


Precision Fluid Management in Continuous Renal Replacement Therapy

Raghavan Murugan^a Eric Hoste^{d, e} Ravindra L. Mehta^c Sara Samoni^f Xiaoqiang Ding^h Mitchell H. Rosner^b John A. Kellum^a Claudio Ronco^g on behalf of the Acute Disease Quality Initiative (ADQI) Consensus Group

- Fluid Management During CRRT: 3 goals
 - Maintain patency of the circuit
 - Maintain plasma and acid-base homeostasis
 - Regulate fluid balance

Conceptual Framework: Fluid Management during CRRT

Terminology: Dialysis & Replacement Solutions

- United States: FDA standards and approvals for dialysis and replacement solutions differ
- United States FDA: Considers anything placed into vascular space a drug
 - Replacement Solutions: Considered a drug

Fluid Composition

- Buffer
- Electrolyte Composition
- Glucose

Buffers

- Acetate (abandoned): Associated with hemodynamic instability
 - Excessive nitric oxide production
 - Excessive cytokine synthesis
- Lactate
 - Converted to bicarb on equimolar amounts
 - Hyperlactatemia (intolerance highest in liver failure & circulatory arrest)
 - Worsened acidosis
 - Impair cellular function and catabolism
 - May lead to clinical misinterpretation

Buffers

• Bicarbonate

- Major extracellular buffer
- Higher risk of bacterial contamination
- Solution unstable in presence of
 - Calcium and Magnesium
- Clinical Trials evaluating lactate vs. bicarbonate
 - Bicarbonate buffers associated with less
 - Hyperlactatemia
 - Better correction of acidosis
 - Better hemodynamics and hemodynamic tolerance

KDIGO

- 5.7.1: We suggest using bicarbonate, rather than lactate, as a buffer in dialysate and replacement fluid for RRT in patients with AKI. (2C)
- 5.7.2: We recommend using bicarbonate, rather than lactate, as a buffer in dialysate and replacement fluid for RRT in patients with AKI and circulatory shock. (1B)
- 5.7.3: We suggest using bicarbonate, rather than lactate, as a buffer in dialysate and replacement fluid for RRT in patients with AKI and liver failure and/or lactic acidemia. (2B)

Fluid Composition: Electrolyte & Glucose

• Sodium

- 130 -140 mEq/L
- Consider 130 depending on anticoagulation strategy
- Potassium
 - 0-4 mEq/L
 - Generally use 4
- Bicarbonate
 - 22-35 mEq/L
 - Adjust based on anticoagulation strategy
- Phosphate
- Glucose
- Magnesium
- Calcium
 - Calcium free for RCA

N_xStage [®] : Pureflow Bicarbonate Solution

Product Code	Bicarbonate (mEq/L)	Potassium (mEq/L)	Sodium (mEq/L)	Calcium (mEq/L)	Magnesium (mEq/L)	Chloride (mEq/L)	Glucose (mg/dL)
RFP-400	35	2	140	3	1	111	100
RFP-401	35	4	140	3	1	113	100
RFP-402	35	0	140	3	1	109	100
RFP-403	35	2	140	0	1.5	108.5	100
RFP-404	35	4	140	2.5	1.5	113	100
RFP-406 [*]	35	3	140	3	1.5	112.5	100
RFP-453	25	2	130	0	1.5	108.5	100
RFP-454	25	4	130	0	1.5	110.5	100
RFP-456	25	4	140	0	1.5	120.5	100

Prismasate [®] Diasylate (Baxter)

		Calcium Formulas		Calcium-Free Formulas			
	Plasma ⁴	PrismaSATE BGK 4/2.5	PrismaSATE BK 0/3.5	PrismaSATE BGK 2/0	PrismaSATE BGK 4/0/1.2	PrismaSATE B22GK 4/0	PrismaSATE BK 2/0
Potassium K⁺(mEq/L)	3.5-5.0	4	0	2	4	4	2
Calcium Ca ²⁺ (mEq/L)	2.3-2.6+	2.5	3.5	0	0	0	0
Magnesium Mg ²⁺ (mEq/L)	1.4-2.0	1.5	1.0	1.0	1.2	1.5	1.0
Sodium Na⁺ (mEq/L)	135-145	140	140	140	140	140	140
Chloride Cl ⁻ (mEq/L)	100-108	113	109.5	108	110.2	120.5	108
Bicarbonate HCO ₃ -(mEq/L)	22-26	32	32	32	32	22	32
Lactate (mEq/L)	0.5-2.2	3	3	3	3	3	3
Dextrose (mg/dL)	70-110	110	0	110	110	110	0
Osmolarity (m0sm/L)	280-296	300	287	292	296	296	286

DUOSOL[®] (Braun)

	Bicarbonate	Bicarbonate	Bicarbonate	Bicarbonate	Bicarbonate	Bicarbonate
	35	35	25	32	35	25
	Dialysate	Dialysate	Dialysate	Dialysate	Dialysate	Dialysate
	0K/3Ca	2K/3Ca	2K/0Ca	2K/0Ca	4K/3Ca	4K/0Ca
Na	140	140	136	136	140	136
K	0	2	2	2	4	4
Са	3	3	0	0	3	0
Mg	1	1	1.5	1.5	1	1.5
CI	109	111	115	107.5	113	117
Lactate	0	0	0	0	0	0
HCO ₃	35	35	25	32	35	25
Glucose g/L	1	1	0	0	1	0

Replacement Solutions

Fluid	Comment
Sodium Bicarbonate 150 meq/L	 Treats metabolic acidosis Must be compounded Ameliorates the need for a bicarb drip separate from CRRT device
0.9% Normal Saline	 Isotonic Induce Acidosis Treat alkalosis
Other Options:	 Lactated Ringer or Balance Electrolyte solution 0.45 NS + 75 meq/L Sodium Bicarbonate

Prismasol®

	BGK 0/2.5	BGK 4/2.5	BGK 4/3.5	BGK 2/3.5	BGK 2/0	B22GK 4/0	BK 0/0/1.2	BGK 4/0/1.2
Са	2.5	2.5	3.5	3.5	0	0	0	0
Bicarb	32	32	32	32	32	22	32	32
К	0	4	4	2	2	4	0	4
Mg	1.5	1.5	1	1	1	1.5	1.2	1.2
Na	140	140	140	140	140	140	140	140
Cl	109	113	113.5	111.5	108	120.5	106.2	110.2
Lactate	3	3	3	3	3	3	3	3
Dextrose	100	100	100	100	100	100	100	100

Phosphate containing Solutions

Continuous veno-venous hemofiltration using a phosphate-containing replacement fluid in the setting of regional citrate anticoagulation

Santo Morabito¹, Valentina Pistolesi¹, Luigi Tritapepe², Elio Vitaliano³, Laura Zeppilli¹, Francesca Polistena¹, Enrico Fiaccadori⁴, Alessandro Pierucci¹

Original Paper

Blood Purification

Blood Purif 2017;44:8-15 DOI: 10.1159/000453443 Received: September 6, 2016 Accepted: November 15, 2016 Published online: February 21, 2017

Preventing Continuous Renal Replacement Therapy-Induced Hypophosphatemia: An Extended Clinical Experience with a Phosphate-Containing Solution in the Setting of Regional Citrate Anticoagulation

Valentina Pistolesi^a Laura Zeppilli^a Francesca Polistena^a Maria Itala Sacco^a Alessandro Pierucci^a Luigi Tritapepe^b Giuseppe Regolisti^c Enrico Fiaccadori^c Santo Morabito^a

So many choices. What to do?

As my mother says, "Keep it Simple Silly!"

- My Previous Institution Michigan Pediatrics (2 Base Solutions)
 - Prismasol BK 0/0/1.2 (Bicarb 32, 0 Calcium, 0 K)
 - Prismasol BGK 0/2.5 (Bicarb 32, 2.5 Calcium, 0 K)
 - Add Potassium (almost always 4) and Phos (.75 or 1.5 mmol)
 - Normal saline
 - 150 meq/L NaBicarb
- Michigan Adults
 - Duosol (Na 136, bicarb 25, 2K, no calcium or glucose)
 - Add Potassium (to 3 or 4) and Phos (0.68 or 1.68 mmol)
 - Add bicarb as needed

My current institution (NxStage)

- When utilizing citrate anticoagulation
 - NxStage RFP 403(Bicarb 35, K 2, Ca 0, Mag 1.5)
 - Add PO4 (1.2 mmol KPO4)

- Heparin anticoagulation or if on ECMO (calcium containing NxStage)
 - RFP 400 (Bicarb 35, K 2, Ca 3, Mag 1)
 - Add PO4, K, and Mag

Other institutions

- UAB (Dr. Tolwani): 4 solutions
 - Due to high volume and safety concerns. They do not add electrolytes to bags
 - CVVHDF institution
 - K 4/bicarb 25/Ca 0 (used with citrate)
 - K 4/bicarb 35/Ca 3
 - K 0/bicarb 35/Ca 3.
 - Dilute citrate solution with OK that serves as a replacement solution and anticoagulant.

• Reality: There is no right answer. Know what you do and do it well.

Fluid Balance

Fluid Balance

- When?
- How much?
- How?

When do we start to remove fluid?

British Journal of Anaesthesia Page 1 of 8 doi:10.1093/bja/aeu300

Four phases of intravenous fluid therapy: a conceptual model

E. A. Hoste^{1,2}, K. Maitland^{3,4}, C. S. Brudney⁵, R. Mehta⁶, J.-L. Vincent⁷, D. Yates⁸, J. A. Kellum⁹, M. G. Mythen¹⁰ and A. D. Shaw¹¹ for the ADQI XII Investigators Group

- Rescue
 - Life saving
 - Correct shock
 - Minutes
- Optimization
 - Organ Rescue
 - Optimize tissue perfusion
 - Hours

BJA

Four phases of intravenous fluid therapy: a conceptual model

E. A. Hoste^{1,2}, K. Maitland^{3,4}, C. S. Brudney⁵, R. Mehta⁶, J.-L. Vincent⁷, D. Yates⁸, J. A. Kellum⁹, M. G. Mythen¹⁰ and A. D. Shaw¹¹ for the ADQI XII Investigators Group

- Stabilization
 - Organ support
 - Goal zero or negative fluid balance
 - Days
- De-escalation
 - Organ recovery
 - Mobilize fluid
 - Days to weeks

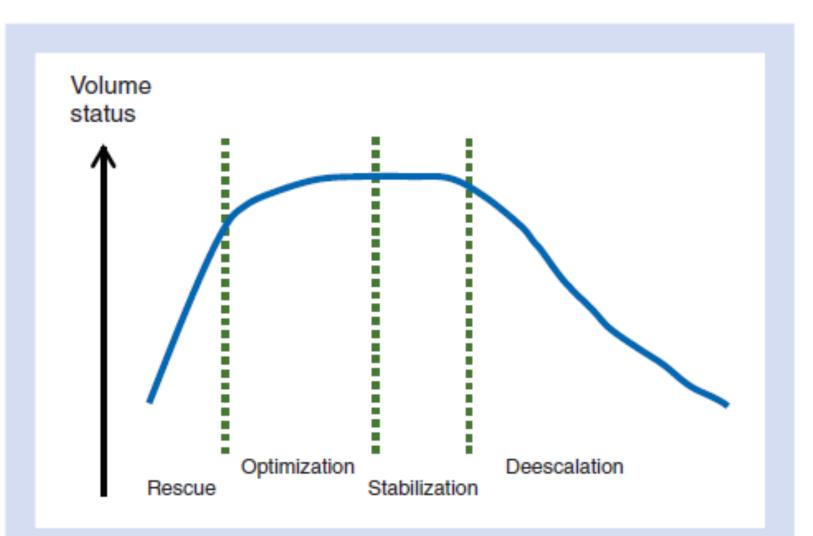


Fig 2 Patients' volume status at different stages of resuscitation. Reproduced with permission from ADQI (www.ADQI.org).

When?

- CRRT may be initiated during any phase
- Classically fluid removal occurs during the de-escalation phase
- Is this absolute? Of course not. We are clinicians not robots.
 - Certain clinical scenarios may warrant earlier intervention.
 - Florid pulmonary edema going toward ECMO
 - Critically ill on ECMO

How much? Machine concerns

- Governed by Filtration Fraction
 - FF = <u>Ultrafiltration flow rate</u> Plasma flow rate
- Increase filtration fraction with
 - Increase UF rate
 - Increase Hct
 - Decreased blood flow

FF >20-25% associated with increased clotting

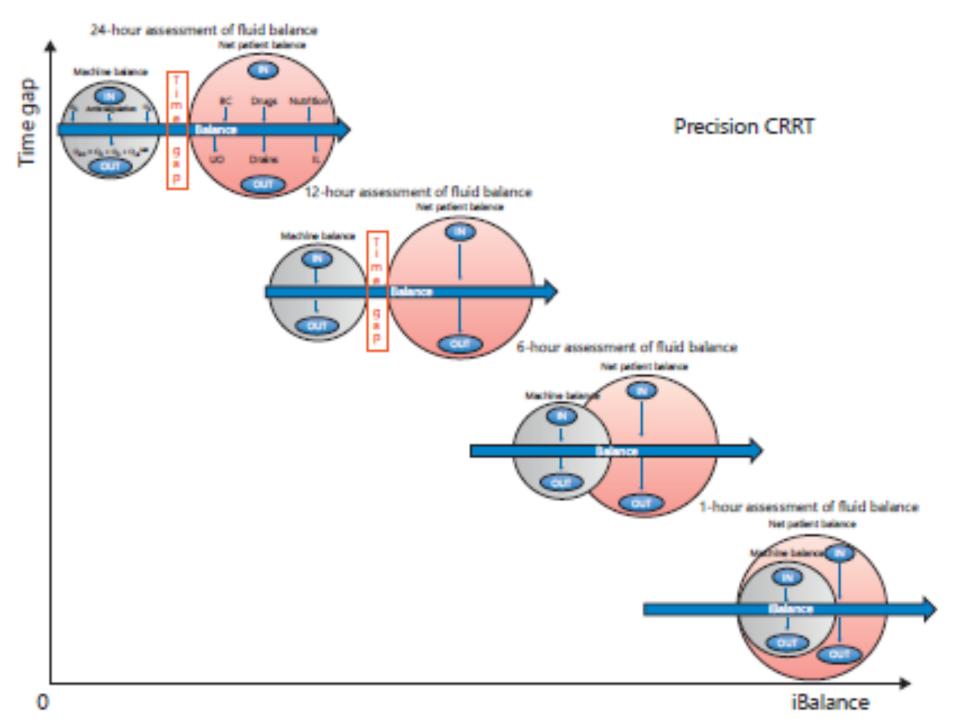
How much? Machine concerns

- Current machines calculate FF
 - Calculate UF/blood flow
 - Do not take into account plasma volume
 - Underestimate FF

How much? Patient concerns

- Plasma refilling rate Is a critical concept
 - From interstitial compartment
 - If UF exceed refilling rate = hypotension. <u>No Bueno!!!</u>
- CRRT fluid removal prescription must take into account:
 - A collaborative fluid balance goal set by team
 - Hemodynamic status
 - Rate of fluid removal
- Role of tools to assess volume status: IVC volume, pulse/ stroke variability, bedside echo?
- Currently driven by trial and error

How much and how fast?


- Fluid removal strategies on CRRT have not been systematically studied
 - Can't recommend one over another
- Pediatric "limit" of fluid removal
 - Classically 2 mL/kg/hr
- Adults "limit" fluid removal
 - Classically 200 250 mL/hr
 - 4 to 6 liters per day

How? Terminology

- Machine fluid balance
 - Depends on UF, replacement fluid rates, anticoagulation
- Patient fluid balance
 - ∑ (patient inputs and outputs)
 - Inputs: blood products, IVF, TPN, medications
 - Outputs: Urine, drains, stool
- Integrated Balance = Machine + Patient fluid balance
 - Accuracy improves with more frequent assessments

Murugan et al, Blood Puri, 2016

How? Delicate balance

- Many competing Interests
 - Nursing burden
 - Nursing education
 - Standardized protocols
 - Physician communication
 - Who orders fluid removal
 - Hourly assessment versus goal for a day?
- Precision CRRT achieved with hourly assessments.
- What strategy does the literature support????

What do we do?

- Michigan Adult & Pediatrics & MUSC Pediatrics
 - Max fluid removal
 - Pediatrics 2 mL/kg/hr and Adults 200 250 mL/hr
 - Utilize hourly NET fluid balance rate
 - Nurses take into account the I/O's from previous hour and program into machine each hour on the hour
 - Ex: Anuric patient.
 - Goal: -50/hr
 - Patient input total 200mL last hour
 - Nurse will program in 250ml fluid removal for the next hour.
 - Careful: Fluid boluses, blood products, etc.
 - May lead to high filtration fraction

The most critical point is Collaboration

Thank You & Questions

The Prospective Pediatric Acute Kidney Injury Research Group