

The impact of C-reactive protein-to-albumin ratio on mortality in patients with acute kidney injury requiring continuous renal replacement therapy : A multicenter retrospective study

Yu-Kyung Chung¹, You-Hyun Jeon¹, Seong-Wook Lee¹, Youn-Ghwan Lee¹, Yoon-Ju Kim¹, Hee-Yeon Jung¹, Sun-Hee Park¹, Chan-Duck Kim¹, Yong-Lim Kim¹, Jung-Hoon Lim¹, Jang-Hee Cho¹ ¹Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University,

Tor Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National Onivers

Kyungpook National University Hospital, Daegu, South Korea

Introduction

The C-reactive protein-to-albumin ratio (CAR) is a prognostic marker in various diseases that represents patients' inflammation and nutritional status. Here, we aimed to investigate the prognostic value of CAR in critically ill patients with severe acute kidney injury (AKI) requiring continuous renal replacement therapy (CRRT).

Methods and Materials

We retrospectively collected data from 8 tertiary hospitals in Korea between 2006 and 2021. Patients were divided into quartiles according to CAR levels at the time of CRRT initiation. Cox regression analyses were performed to investigate the impacts of CAR on the in-hospital mortality.

The mortality prediction performance of CAR was evaluated using area under the curves (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI).

Results

Table 1. Baseline characteristics

variables	Quartile 1	Quartile 2	Quartile 3	Quartile 4	Р		
variables	(n=999)	(n=999)	(n=1000)	(n=998)			
CAR	0.39 (0.13-0.74)	2.17 (1.63-2.76)	5.32 (4.42-6.40)	11.06 (9.28-13.39)	<0.001		
Age, years	65.2 ±15.4	66.2 ± 15.1	66.9 ± 14.8	67.4 ± 14.5	0.007		
Sex, male, n(%)	583 (58.4)	604 (60.5)	615 (61.5)	627 (62.8)	0.216		
ICU admission body weight, kg	61.6 ± 15.0	61.2 ± 14.0	60.9 ± 13.0	62.1 ± 12.9	0.218		
ICU admission BMI, kg/m2	23.3 ± 4.6	23.4 ± 7.0	23.0 ± 4.6	23.3 ± 4.3	0.432		
CCI	3.4 ± 2.6	3.6 ± 2.8	3.6 ± 2.8	3.5 ± 2.7	0.379		
Cause of AKI, n (%)							
Septic	375 (37.5)	525 (52.6)	607 (60.7)	711 (71.2)			
Non-septic	624 (62.5)	473 (47.4)	393 (39.3)	287 (28.8)			
Comorbidities, n (%)							
Hypertension	416 (41.6)	383 (38.4)	411 (41.1)	368 (36.9)	0.094		
Diabetes	282 (28.2)	264 (26.5)	253 (25.3)	248 (24.9)	0.476		
Congestive heart failure	218 (21.8)	219 (21.9)	149 (14.9)	119 (11.9)	<0.001		
Chronic liver disease	119 (11.9)	111 (11.1)	102 (10.2)	98 (9.8)	0.426		
Chronic obstructive pulmonary disease	53 (5.3)	58 (5.8)	54 (5.4)	78 (7.8)	0.065		
Leukemia	8 (1.0)	25 (3.1)	38 (4.8)	81 (9.9)	<0.001		
Metastatic cancer	36 (3.6)	60 (6.0)	83 (8.3)	71 (7.1)	<0.001		
SOFA score	A score 11.2 ± 3.4		12.2 ± 3.3	12.8 ± 3.5	<0.001		
APACHE II score	26.5 ± 4.4	26.6 ± 7.6	27.9 ± 7.8	29.2 ± 7.7	<0.001		
Laboratory findings at	t CRRT initiation						
WBC count, ×10 ³ /µL	14.4 ± 17.1	16.0 ± 18.6	16.4 ± 18.4	15.0 ± 19.8	0.066		
Platelet count, ×10³/μL	126.2 ± 88.6	117.3 ± 94.2	115.7 ± 105.9	100.7 ± 96.1	<0.001		
Hemoglobin, g/dL	10.0 ± 2.7	9.6 ± 2.3	9.6 ± 2.1	9.5 ± 2.2	<0.001		
Potassium, mEq/L	6.2 ± 2.8	5.9 ± 2.7	5.6 ± 2.4	5.8 ± 2.5	0.002		
BUN, mg/dL	50.9 ± 35.9	55.6 ± 33.2	57.5 ± 32.5	57.6 ± 31.1	<0.001		
Creatinine, mg/dL	3.3 ± 3.0	3.1 ± 2.4	3.1 ± 2.1	3.1 ± 2.1	0.080		
Calcium, mg/dL	8.2 ± 1.3	8.0 ± 2.7	7.8 ± 1.1	7.6 ± 3.3	<0.001		
Albumin, g/dL	3.1 ± 0.7	2.8 ± 0.6	2.7 ± 0.5	2.4 ± 0.5	<0.001		
CRP, mg/dL	1.4 ±1.1	6.3 ± 2.2	14.4 ± 4.1	27.6 ± 7.7	<0.001		
Lactate (n = 2786)	7.9 ± 6.4	7.0 ± 5.6	6.3 ± 5.3	7.2 ± 5.6	<0.001		

Table 2. Cox regression analyses for in-hospital mortality in CAR quartile groups

	Model 1		Model 2		Model 3		Model 4	
	HR (95% CI)	Р	HR (95% CI)	Р	HR (95% CI)	Р	HR (95% CI)	Р
Quartile 1	Reference		Reference		Reference		Reference	
Quartile 2	1.08 (0.96–1.20)	0.203	1.07 (0.96-1.20)	0.239	1.07 (0.95-1.19)	0.257	1.11 (0.98-1.26)	0.098
Quartile 3	1.19 (1.07-1.33)	0.002	1.18 (1.06-1.32)	0.003	1.20 (1.07-1.34)	0.001	1.15 (1.02-1.30)	0.023
Quartile 4	1.43 (1.23-1.60)	< 0.001	1.41 (1.27-1.58)	<0.001	1.40 (1.26-1.57)	<0.001	1.33 (1.18-1.50)	<0.001

Model 1: unadjusted.

Model 2: adjusted for age and sex.

Model 3: adjusted for age, sex, hypertension, and CCI.

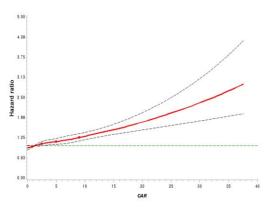

Model 4: adjusted for age, sex, hypertension, CCI, APACHE II score, and mechanical ventilator use.

Table 3. Comparison of the AUC and predictive power of prognosis for in-hospital mortality

Variables	AUC (95% CI)	Р	NRI (95% CI)	Р	IDI (95% CI)	Р
CAR	0.580 (0.564-0.595)	Reference				
CRP	0.555 (0.540-0.571)	<0.001				
APACHE II	0.665 (0.646-0.684)	Reference	Reference		Reference	
APACHE II + CAR	0.674 (0.656-0.693)	0.016	0.151 (0.084-0.223)	<0.001	0.007 (0.004-0.010)	<0.001
SOFA	0.669 (0.650-0.687)	Reference	Reference		Reference	
SOFA + CAR	0.677 (0.658-0.695)	0.004	0.134 (0.065-0.204)	<0.001	0.007 (0.004-0.010)	<0.001
APACHE II + SOFA	0.697 (0.679-0.715)	Reference	Reference		Reference	
APACHE II + SOFA + CAR	0.702 (0.683-0.720)	0.036	0.130 (0.060-0.200)	<0.001	0.005 (0.003-0.007)	<0.001

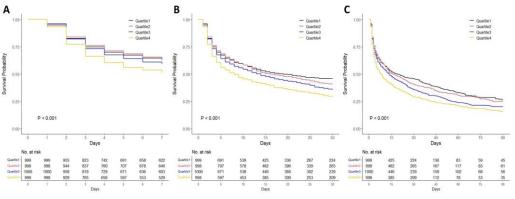

Abbreviations: AUC, area under the curve; CI, confidence interval; NRI, net reclassification improvement; IDI, integrated discrimination improvement; CAR, C-reactive protein-to-albumin ratio; CRP, C-reactive protein; APACHE II, acute physiology and chronic health evaluation II; SOFA, sequential organ failure assessment.

Figure 1. Relationship between the CAR and in-hospital mortality hazard ratio according to the restricted cubic spline regression model.

The reference value is the upper limit of quartile 1 (1.57). The red line indicates the estimated hazard ratio; the dashed green line indicates the reference line of null hypothesis that the hazard ratio is 1; the dashed black lines indicate the upper and lower 95% confidence limits.

Figure 2. Kaplan–Meier curves for in-hospital mortality according to CAR quartiles.

The (A) 7-daymortality, (B) 30-day mortality, (C) 90-day mortality are significantly different according to CAR quartiles

Abbreviations: CAR, C-reactive protein-to-albumin ratio; ICU, intensive care unit; BMI, body mass index; CCI, Charlson Comorbidity Index; AKI, acute kidney injury; SOFA, sequential organ failure assessment; APACHE II, Acute Physiology and Chronic Health Evaluation II; CRRT, continuous renal replacement therapy; WBC, white blood cell; BUN, blood urea nitrogen; CRP, C-reactive protein.

Conclusions

In conclusion, among critically ill patients requiring CRRT, those with a high CAR had an increased in-hospital mortality rate. CAR enhanced the predictive performance when combined with the conventional ICU severity scoring system, such as APACHE II and SOFA scores. Overall, CAR can be a complementary predictor of mortality in critically ill patients with severe AKI.

