Practices Among Healthcare Providers Taking Care of Critically Ill Patients with Acute Kidney Injury: A Survey

Khaled Shawwa¹, Carrie Griffiths², Kwame Akuamoah-Boateng³, Connor Nevin¹, Nicole Scherrer¹, Paul McCarthy¹, Matthew Sparks⁴, Kianoush Kashani⁵, Javier Neyra⁶, Ankit Sakhuja¹

¹West Virginia University, Morgantown, WV
 ²Wingate University, Wingate, NC
 ³VCUHealth, Richmond, VA
 ⁴ Duke University School of Medicine, Durham, NC
 ⁵Mayo Clinic, Rochester, MN
 ⁶University of Alabama, Birmingham, AL

٠

Introduction

Acute kidney injury (AKI) is seen in over fifty percent of critically ill patients and is associated with high mortality. The general approach to managing AKI include early detection or risk prediction, identifying etiology, avoiding nephrotoxins, carefully monitoring kidney function, and optimizing hemodynamics and volume status¹.

Over the last several years, several tools have become available for diagnosing and managing AKI. These include novel biomarkers, prediction models, clinical decision support systems, point-of-care ultrasound (POCUS), and best practice Kidney Disease: Improving Global Outcomes (KIDIGO) AKI guidelines². Although they have been shown to improve AKI patient outcomes, their utilization is reported as limited³. We designed this study to determine the utilization of different tools used for the diagnosis and management of AKI among multidisciplinary healthcare professionals caring for critically ill patients.

Methods and Materials

We designed an anonymous web-based survey to identify practice patterns for diagnosing and managing AKI among multidisciplinary healthcare professionals caring for critically ill patients. The survey was built using RedCap and disseminated to members of the Society of Critical Care Medicine (SCCM) through the organization's Research Surveys Services. The survey included sixteen questions, with the first six focused on the demographics of responders and the remainder dedicated to the diagnosis and management of AKI.

This was a descriptive study with categorial variables

There were 365 responders to our survey with the majority attending intensivists (63 %). Sixty one percent of responders practiced in academic centers. Responders practice in a variety of ICU settings and about half report caring for at least 50 patients with AKI in the last six months (table 1).

Results

The most common reason for nephrology consultation was for renal replacement therapy. Non-attending responders were more likely to consult nephrology for persistent AKI. One quarter of responders reported using POCUS at least 75% of the time in volume assessment (table 2).

Only 15% of responders reported using novel biomarkers and only 6% of responders reported using prediction models to identify patients at risk of AKI (table 3).

		value			value			value
Role	Attending Intensivist	230 (63%)	Consulting	Any AKI	11 (3%)	Use of biomarkers	Yes	55 (15%)
	Nurse practitioner	46 (12.6%)	Nephrology*	AKI persists for more than 48 hours	68 (19%)	to diagnose AKI	No	310 (85%)
	Pharmacist	33 (9%)		AKI KDIGO stage 2 or 3	152 (42%)	Use of specific	Cystatin C	40 (72%)
	Fellow	26 (7%)		For renal replacement therapy (dialysis)	267 (73%)	biomarkers (N=55)*	Nephrocheck (TIMP-2 and IGFBP-7)	10 (18%)
	Other	30 (8.2%)		When a primary kidney disorder is	112 (31%)		NGAL	18 (33%)
Work setting	Academic center	224 (61.3%)		suspected (e.g., glomerulonephritis)			Others	2 (4%)
	Community Hospital	120 (33%)		Other	12 (3.3%)	Use of novel	<25% of the time	20 (36%)
	Academic and community hospital	21 (5.8%)	Use of Urine	Never/Unavailable	60 (16.4%)	biomarkers in	25-75% of the time	17 (31%)
Responders'	Professor	59 (16%)	microscopy	Less than 25% of the time	66 (18%)	practice (N=55)	>75% of the time	14 (25%)
academic rank	Associate Professor	59 (16%)		25-75% of the time	69 (19%)		Always	4 (7%)
	Assistant Professor	86 (24%)		More than 75% of the time	54 (15%)	Use of prediction	Yes	20 (6%)
	/Instructor/Lecturer	27 (7.5%)		Always	71 (20%)	models to identify		
	Lecturer	10 (2.7%)		Performed by nephrology	45 (12%)	patients at high risk	No	340 (93%)
Type of ICU*	Medical	117 (32%)	Use of a formal	Never	21 (6%)	of developing AKI	Not answered	5 (1%)
	Surgical	148 (41%)	ultrasound	<25% of the time	127 (35%)	Type of prediction	Static	8 (40%)
	Cardiovascular/thoracic	83 (23%)		25-75% of the time	122 (33%)	model used (N=20)	Dynamic	12 (60%)
	Neurological	62 (17%)		>75% of the time	66 (18%)	Frequency of use of	<25% of the time	3 (15%)
	Pediatric	60 (16%)		Always	29 (8%)	the prediction	25-75% of the time	7 (35%)
	Mixed/Other	117 (32%)	Use of bedside	Never	205 (56.2%)	models (N=20)	>75% of the time	2 (10%)
Experience in critical care	<5 years	80 (21.9%)	POCUS of the kidneys	<25% of the time	107 (29%)		Always	7 (35%)
	5-10 years	97 (26.6%)		25-75% of the time	30 (8%)		Not answered	1 (5%)
	10-20 years	83 (22.7%)		>75% of the time	15 (4%)	Usefulness of	Not at all useful	2 (10%)
	>20 years	105 (28.7%)		Always	8 (2%)	prediction models	Somewhat useful	17 (85%)
Estimated number	< 25 patients	57 (15%)	Use of bedside	Never	87 (23.8%)	(N=20)	Very useful	1 (5%)
of patients with	25-50 patients	131 (36%)	POCUS for volume	<25% of the time	86 (24%)	Use of clinical	Yes	25 (6.8%)
AKI under the care	50-75 patients	70 (19%)	assessment	25-75% of the time	106 (29%)	support system		
of responders in the	75-100 patients	46 (13%)		>75% of the time	61 (17%)		No	338 (92.6%)
nast six months	>100 natients	61 (17%)		Always	25 (7%)			

Discussion

The survey showed that there is wide variation in the use of tools for diagnosing and managing AKI with less than half of those caring for patients with AKI in the ICU routinely using POCUS, biomarkers, prediction models, or a clinical decision support support system in their practice. Most responders report consulting nephrology in the minority cases of AKI. Intensivists working in medical ICU and academic centers requested nephrology consultation for AKI more often than others.

presented as counts and percentages. The Chi-squared test or Fisher's exact test was utilized for comparing categorial variables and alpha was set at 0.05. We performed pre-planned analysis to identify differences in responses based the roles, practice-type, experience and number of AKI patients seen in last six months of the responders.

References

- Himmelfarb J, Joannidis M, Molitoris B, et al. *Clin J Am Soc Nephrol*. Jul 2008
 KDIGO clinical practice guideline for acute kidney injury. *Kidney Int Suppl*. 2012
- 3. Kolhe NV, Staples D, Reilly T, et al. *PLoS One*. 2015

Conclusions

- There is significant variation in the diagnosis and management of AKI in the ICU
- There is underutilization of biomarkers, POCUs, predictive models, and clinical decision support systems, and possibly, nephrology consultation in the diagnosis and management of AKI in the ICU
- This study supports continued efforts to promote education on the diagnosis and management of AKI in critically ill patients