

In vitro Testing of the Accuracy of Electrolyte Correction in Blood Priming on the Aquadex machine

Tennille N. Webb, MD, MSPH^{1,2}; Justin Nix, RN^{1,3}; Jessica Potts, BSN, RN^{1,2}; Caleb Watson, BS, RRT³; David Askenazi, MD, MSPH^{1,2};Traci Roberts, RPh^{1,3}; Alyssa Umberger, MSN, CRNP^{1,3}; Lee Freeman, RN^{1,3}; Michlene Wright, RN^{1,3}; Jamela Holston, RN^{1,3}; Kara Short, MSN, CRNP^{1,3}

¹PICAN (Pediatric and Infant Center for Acute Nephrology), ²University of Alabama at Birmingham Department of Pediatrics Division of Pediatric Nephrology, ³Children's of Alabama

Objective

• At Children's of Alabama, we sought to test our blood prime protocol in vitro.

Introduction

• The addition of smaller circuits and neonatal-specific devices for continuous renal replacement therapy (CRRT) has decreased the threshold for using blood primes for smaller patients.

Results

Table 1. Labs at Gases 1-3 at varying sodium bicarbonate concentrations with 0.6 mL of calcium gluconate

		<u>0.6 mL CaGluc</u>				
		1:1	1.25:1	1.5:1		
Variable	Gas	(Bicarb:PRBC)	(Bicarb:PRBC)	(Bicarb:PRBC)	p-value	
рН	1	6.6	6.6	6.6	1	
	2	7.13 (6.6,7.22)	7.21 (6.6,7.23)	7.41 (6.6,7.47)	0.23	
	3	7.2 (7.12,7.23)	7.21 (7.21,7.26)	7.44 (7.4,7.47)	0.03	
Calcium (mmol/L)	1	0.16	0.16	0.16	1	
	2	0.16 (0.16,0.16)	0.16 (0.16,0.16)	0.16 (0.16,0.16)	1	
	3	1.85 (1.85,1.85)	1.85 (1.37,1.85)	0.99 (0.61,1.15)	0.01	
Sodium (mEq/L)	1	80 (79,80)	92 (80 <i>,</i> 93.5)	94 (93 <i>,</i> 95)	0.02	
	2	122 (80,150)	135 (93 <i>,</i> 153.8)	179 (94.5 <i>,</i> 179)	0.16	
	3	141 (119,151.5)	135 (134,149)	179 (179,179)	0.04	
Potassium (mEq/L)	1	14 (14,14)	14 (14,14)	14 (14,14)	1	
	2	14 (14,14)	14 (12.6,14)	12.8 (11.7,14)	<0.01	
	3	14 (14,14)	12.6 (12.1,14)	11.6 (11.4,12)	<0.01	

- Given the increase in filters and devices that specialize in immunomodulation, the need for blood priming remains an important part of any institution's program.
- Treating packed red blood cells (PRBC) to present a more homeostatic product can be done in several ways but should be performed consistently to prevent electrolyte abnormalities for the patient.
- The optimal method for treating packed red blood cells (PRBC) to present a more homeostatic product has yet to be determined.

Methods and Materials

Current Guideline

- 1:1 ratio of bicarbonate mixture (15 mEq of NaHCO3 (150 mEq/L) with 85 mL of sterile water) and PRBC of the same volume.
- Upon initiation, the patient is given 100 g or 300 g of calcium gluconate (100 mg/mL), depending on the extracorporeal volume of the circuit.

Table 2. Labs at Gases 1-3 at varying sodium bicarbonate concentrations with 1 mL of calcium gluconate

		<u>1 mL CaGluc</u>						
		1:1	1.25:1	1.5:1				
Variable	Gas	(Bicarb:PRBC)	(Bicarb:PRBC)	(Bicarb:PRBC)	p-value			
рН	1	6.6	6.6	6.6	1			
	2	7.09 (6.6,7.11)	7.18 (6.6,7.2)	7.29 (6.6,7.32)	0.03			
	3	7.11 (7.09,7.13)	7.19 (7.14,7.2)	7.3 (7.26,7.37)	<0.01			
Calcium (mmol/L)	1	0.16	0.16	0.16	1			
	2	0.16 (0.16,0.16)	0.16 (0.16,0.16)	0.16 (0.16,0.16)	1			
	3	1.85 (1.85,1.85)	1.85 (1.85,1.85)	1.85 (1.85 <i>,</i> 1.85)	1			
Sodium (mEq/L)	1	92 (92,92.5)	80 (79.5 <i>,</i> 80.5)	77 (77,77)	<0.01			
	2	117 (92,124)	125 (80,145)	179 (77,179)	0.17			
	3	117 (114,118)	143 (112.5 <i>,</i> 144.5)	179 (179,179)	<0.01			
Potassium (mEq/L)	1	14 (14,14)	14 (14,14)	14 (14,14)	1			
	2	14 (14,14)	14 (14,14)	9.7 (9.4,14)	<0.01			
	3	14 (14,14)	14 (14,14)	9.3 (9.3,9.45)	<0.01			
Results Summary								

- We had a total of 84 blood gases
- Gas 1 The baseline gas (PRBCs alone)
- Gas 2 As the bicarbonate:PRBC ratio increased:

<u>Guideline Tested</u>

- Blood prime was tested in vitro, using a sterile bag to mimic the circuit.
- Six scenarios were created based on the bicarbonate mixture and calcium volume.
 - We used 20 mL of bicarbonate mixture and PRBC (baseline, 125%, 150%) with 1 mL and 0.6 mL of calcium gluconate.
- Arterial blood gas testing was performed on:
 - Gas 1: PRBCs alone
 - Gas 2: Bicarbonate/PRBC mixture after five minutes
 - Gas 3: Bicarbonate/PRBC mixture with the addition of calcium
- Four different PRBC units were used.
- We evaluated four laboratory values: pH, calcium, sodium, and potassium.

- pH increased
- Sodium increased
- Calcium had no change
- Potassium decreased
- Gas 3 Two different calcium gluconate doses (0.6 mL and 1 mL):
 - No significant change in pH, sodium, or potassium
 - A change in the distribution of calcium

Conclusions

- To improve acidosis, increasing sodium bicarbonate at the current concentration can be effective; however, hypernatremia can be a potential issue.
- A smaller dose of calcium than our current standard may be sufficient to correct hypocalcemia.
- Hyperkalemia remains an issue.
- Additional testing is needed to determine the optimal method to make pRBC homeostatic for CRRT blood prime.

THE 29TH INTERNATIONAL CONFERENCE ON ADVANCES IN CRITICAL CARE NEPHROLOGY

MARCH 12-15, 2024 SAN DIEGO, CALIFORNIA