Prediction of Intradialytic Hypotension by Machine Learning: A Systematic Review

Nasrin Nikravangolsefid, M.D., M.P.H. 1,2, Jacob Ninan, M.D. 1, Hong Hieu Truong, M.D.1,2, Mariam Charkviani, M.D.1, Raghavan Murugan ,M.D.3, Gilles Clermont, M.D. 3, Kianoush B Kashani, M.D., M.S.1,2, , Juan Pablo Domecq Garces, M.D.1

Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
 Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Introduction

- Intradialytic hypotension (IDH) is a common complication associated with increased morbidity, mortality, and cardiovascular events.
- Several machine learning (ML) algorithms have been recently developed to predict IDH.
- We aimed to systematically review the ML models employed to predict IDH, their
 - performance, methodological integrity, and clinical applicability.

Methods and Materials

- Pre-established protocol registered at the International Prospective Register of Systematic Reviews (PROSPERO ID: CRD42022362194).
- A comprehensive search: across 6 databases from inception to July 20, 2023.
- Two independent investigators (NN and JN) reviewed the articles, extracted data, and evaluated the risk of bias using the Prediction model Risk of Bias Assessment Tool (PROBAST).

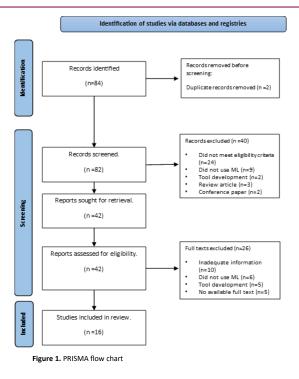


Table 1. Details of Machine Learning Model Assessment of Included Studies

				Calibration	Validation	
Author/Year	ML models	Model Performance Evaluation	ML model: AUROC		Internal	External
Gabutti et al. /2004	ANN	Sensitivity. Specificity, PPV	N/A	No	No	No
Gabutti et al./2005	ANN	AUROC	ANN: 0.68	No	Yes	No
Lin et al./ 2018	LASSO	AUROC, Sensitivity, Specificity	LASSO: 0.92	No	Yes	No
Huang et al./2020	Linear Regression RF, XGB, SVR, LASSO, Ensemble	R2, RMSE, MAE	N/A	No	No	No
Kang et al./2021	LR SVM DNN LGBM XGB	AUROC, Accuracy, F1 Score, Recall, Precision, F2 score, Specificity MCC	XGB 0.83 DNN 0.82 SVM 0.81 LGBM 0.81 LR 0.81	Yes	Yes	No
Lee et al./2021	MLP LGBM LR RNN	AUROC, AUPRC, F1 score	RNN: 0.94 LGBM: 0.93 MLP: 0.93 LR: 0.92	Yes	Yes	No
Tung et al./2021	GRU DNN LSTM	MAE, Accuracy, Specificity, Sensitivity	N/A	No	Yes	No
Elbasha et al./2022	ANN	AUROC, AUPRC, Precision, Recall, Accuracy, F1 score	ANN: 0.98	No	No	No
Kim et al./2022	LR XGB RF Deep learning (CNN)	AUROC AUPRC	DL: 0.90 LR: 0.90 XGBM: 0.89 RF: 0.89	No	Yes	Yes
Mendoza- Pitti et al. /2022	LR RF MLP XGB	AUROC AUPRC F1 score Accuracy MCC	XGB: 0.97 RF: 0.93 MLP: 0.93 LR: 0.85	No	Yes	No
Othman et al./2022	MLP, DT, KNN, SVCL, SVCR, RF, GBM	Accuracy, F1-score, Precision, Recall	N/A	Yes	Yes	No
Bae et al./2022	MLP	Accuracy, Sensitivity, Precision, MCC	N/A	No	No	No
Li et al./2022	bCOWOA-KELM	Accuracy, Specificity, Precision, F-measure	N/A	No	Yes	No
Dong et al./2023	LGBM SVM XGB MLP LDA TabNet	AUROC/ C-statistics	LGBM: 0.82 R: 0.81 TabNet: 0.80 XGB: 0.79 MLP: 0.75 SVM: 0.61 XGB: 0.68 TabNet: 0.61 LR: 0.54 MLP: 0.52 SVM: 0.49	No	Yes	No
Lee et al./2023	RF XGB LR Deep learning	Accuracy, Recall, Specificity, Precision, F1 score, MCC, AUPRC, AUROC, NPV	DL: 0.90 XGB: 0.87 RF: 0.86 LR: 0.85	No	Yes	No
Zhang et al./2023	XGB	AUROC, AUPRC, Precision	XGB: 0.88	Yes	Yes	No

Results

- Out of 84 screened articles: 16 studies included
- Inter-rater agreement: near perfect (Cohen's Kappa: 0.83, total agreement: 91.6%)
- 14 studies: Retrospective, 1: Retrospective+ Prospective, 1: Prospective
- 10 studies: Asia (South Korea, Taiwan, China), 3: Europe (Spain, Switzerland),
 2: Africa (Egypt) and 1 :USA
- 14,500 adult patients on HD and 2,349 patients on CRRT
- 12 studies: ESRD. 1:AKI, 3: did not mention population type
- 14 studies (87.5%): high risk of bias
- IDH prevalence reported between 1.2% and 51%
- IDH predictors: varied among studies (6 to 99 variables)
 - Vital signs (15 studies)
 - Dialysis setting measures (15 studies)
 - Demographics (12 studies)
 - Laboratory tests (12 studies)
- 38 ML models used to predict IDH
 - Neural Network models: in 13 studies
 - XGBoost: in 8 studies
 - Random Forest (RF) and Support vector machine (SVM) : in 4 studies
- AUROC ranged from 0.68 to 0.98
- Artificial Neural Network (ANN) and XGBoost: the highest AUROCs of 0.98 and 0.97
- 12 studies: Internal validation
- 1 study: Internal and External validation, 4 studies: Calibration

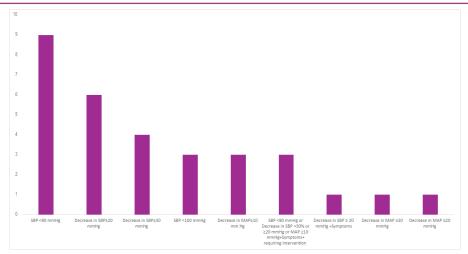


Figure 2. IDH definitions used in studies

Author	Domain 1 (Participants) Domain 2 (Predictors)				Domain 3 (Outcomes)		Domain 4	Overall	judgement
	Risk of Bias	Applicability	Risk of Bias	Applicability	Risk of Bias	Applicability	(Analysis)	Risk of Bias	Concern fo Applicabilit
abutti et al.	High	High	Unclear	Unclear	Low	Low	High	High	High
iabutti et al.	High	High	Low	Low	Low	Low	High	High	High
in et al.	Low	Unclear	Low	Low	High	High	High	High	High
luang et al.	Low	Low	High	High	Unclear	Unclear	High	High	High
ang et al.	High	Unclear	Low	Low	Low	Low	Unclear	High	Unclear
ee et al.	Low	Unclear	Low	Low	Low	Low	Low	Low	Unclear
ung et al.	High	Unclear	Low	Low	Unclear	Unclear	High	High	High
lbasha et al.	High	High	Low	Low	Low	Unclear	Unclear	High	High
im et al.	Low	Unclear	Low	Low	Low	Low	Low	Low	Unclear
/lendoza-Pitti t al.	High	Unclear	High	Unclear	High	Unclear	Unclear	High	Unclear
Othman et al.	High	High	Unclear	Low	Low	Low	High	High	High
ae et al.	High	High	Low	Low	Low	Low	High	High	High
i et al.	High	High	Low	Low	Low	Low	High	High	High
ong et al.	High	High	Low	Low	Low	Low	High	High	High
ee et al. hang et al.	High High	Unclear High	Low	Low	Low	Low	High High	High High	High High
			C	onclu	sions				
			strong p	erformand	ce in pred	icting IDH,	-	he pote	ntial t
	rtainty of	the curre risk of bia	nt body c	fevidence	e is low di	OH prevent ue to	.1011.		
•	0	heteroge	,	0					
				•	-	oy sample orm defini		-	
campre	nuon, anu	the utilize		Consisten		or in actini		11, 13 633	Circial

THE 29TH INTERNATIONAL CONFERENCE ON Advances in Critical Care Nephrology AKI & CRRRT 2024

MARCH 12-15, 2024 SAN DIEGO, CALIFORNIA