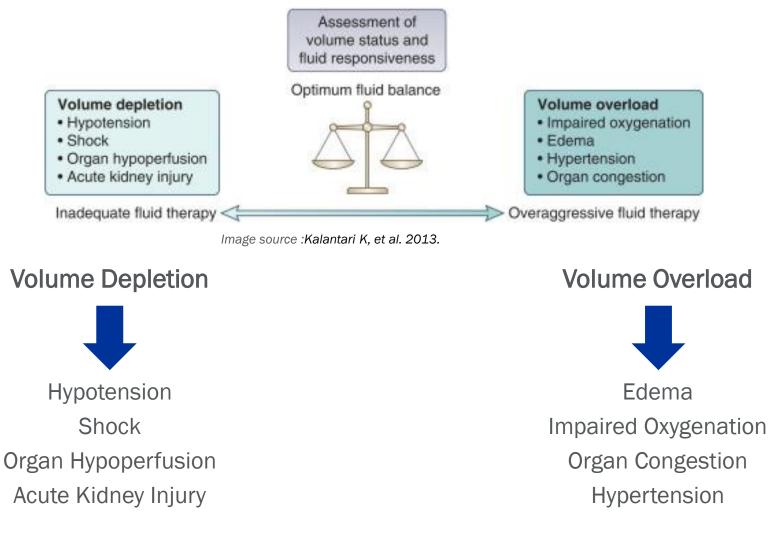


Managing Fluid Balance in the Critically III Patient


Overview

- Importance of optimizing patient fluid balance
- Fluid overload in critical illness
- Renal replacement therapy for fluid management
- Impact of fluid removal rate on hemodynamics
- Monitoring patient fluid status during treatment
- Advantages of continuous renal replacement therapy
- Guideline recommendations for hemodynamically unstable patients
- Managing fluid overload: Septic shock
- Managing fluid overload: Acute decompensated heart failure
- PRISMAFLEX CRRT system
- Summary and conclusions
- References

Optimizing Patient Fluid Balance

USMP/MG120/19-0021 08/19

Optimum Fluid Balance Is Central To Critical Care¹⁻⁴

- 1. Scales K, Pilsworth J. Nurs Stand. 2008 Jul 30-Aug 5;22(47):50-7.
- 2. Bouchard J, Mehta RL. Contrib Nephrol. 2010;164:69-78.
- 3. Murugan R, et al. Blood Purif. 2016;42(3):266-78.
- 4. Kalantari K, et al. Kidney Int. 2013 Jun;83(6):1017-28.

USMP/MG120/19-0021 08/19

Fluid Management in Critical Illness Is Challenging

Critical illness characteristics can make optimizing fluid balance difficult

- Hemodynamic compromise
- Leaky capillary beds
- Multi-organ failure
- Large volumes of IV fluids

Murugan R, et al. Blood Purif. 2016;42(3):266-78.

Fluid Overload in Critical Illness

USMP/MG120/19-0021 08/19

Causes of Fluid Overload in the ICU

IV fluids

• Fluid resuscitation and continuous intravenous administration of fluid can lead to fluid accumulation and overload

Acute kidney injury

• ICU populations are at increased risk for acute kidney failure (AKI) and oliguria, which often lead to fluid accumulation

Sepsis

• Risk of fluid overload is increased with systemic inflammation, reduced oncotic pressure, and increased capillary permeability

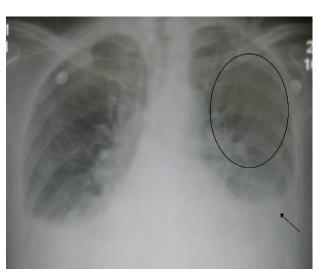
Congestive heart failure

• Congestion, or fluid overload, is a classic clinical feature of patients presenting with heart failure

Rosner MH, et al. Br J Anaesth. 2014 Nov;113(5):764-71.

Clinical Indicators of Fluid Overload

- 10% or greater increase in body weight^{1,2}
- Pitting edema, anasarca^{1,2}
- Lung crackles, rales^{1,2}
- Chest x-ray²
 - Congestion
 - Pulmonary edema
 - Pleural effusions

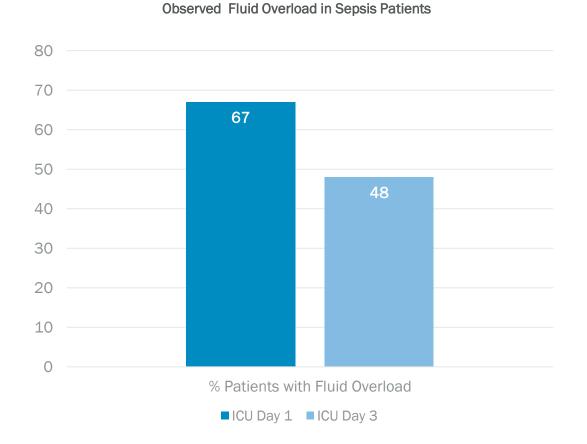


Pitting edema .

Image source: : https://upload.wikimedia.org/wikipedia/commo ns/thumb/8/84/Combinpedal.jpg/1222px-Combinpedal.jpg

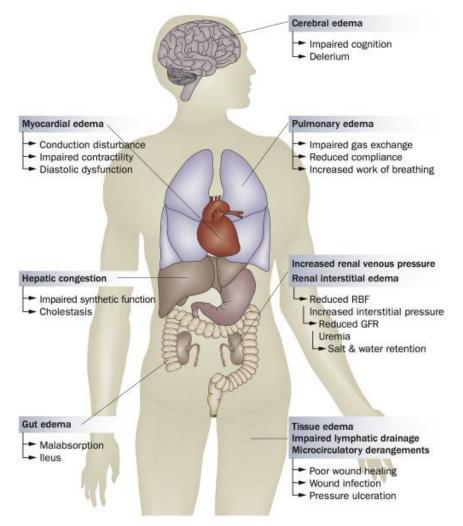
Acute pulmonary edema. Note enlarged heart size, apical vascular redistribution (circle), and small bilateral pleural effusions (arrow).

> Image source: : https://commons.wikimedia.org/wiki/File:Pulmo naryedema09.JPG


1. Frazee E, Kashani K. FKidney Dis (Basel). 2016 Jun;2(2):64-71.

2. Claure-Del Granado R, Mehta RL. BMC Nephrol. 2016;17(1):109.

Fluid Overload Is Extremely Common in the ICU


ICU patients with severe sepsis or septic shock (N = 405)

- Day 1: 67% evidenced fluid overload
- Day 3: 48% evidenced fluid overload

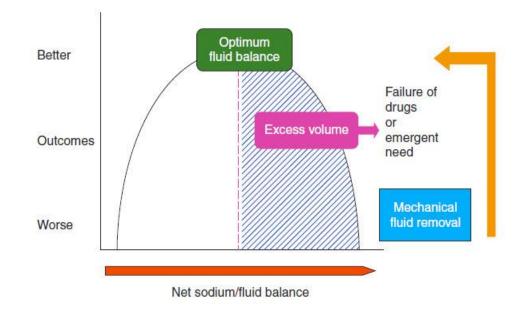
Fluid Overload Is Associated with Poor Outcomes

- Increased mortality¹
- Pulmonary edema^{1,2}
- Myocardial dysfunction²
- Impaired coagulation²
- Delayed wound healing²
- Acute kidney injury²
- Impaired bowel function²
- Reduced liver function²
- Prolonged mechanical ventilation³

1. Claure-Del Granado R, Mehta RL. BMC Nephrol. 2016;17(1):109.

2. Ogbu OC, et al. Curr Opin Crit Care. 2015 Aug;21(4):315-21

3. O'Connor ME, Prowle JR. Crit Care Clin. 2015 Oct;31(4):803-21.


Image source: O'Connorr & Prowle et al. 2015

USMP/MG120/19-0021 08/19

Renal Replacement Therapy for Fluid Management

Managing Fluid Balance with Renal Replacement Therapy

- Renal replacement therapy (RRT) may be utilized for volume management in critically ill patients with fluid overload¹
- Large volumes of fluid required to treat underlying condition can result in fluid accumulation that is often difficult to correct in the absence of renal support²
- Effectiveness of medical management alone can be limited by diuretic-resistance and acute kidney injury³

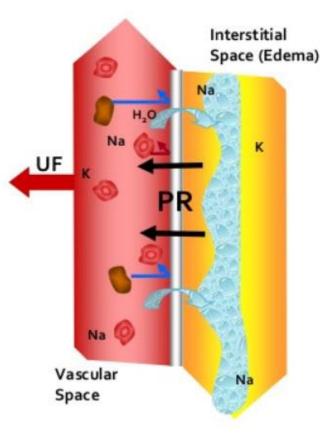
Mechanical fluid removal should be considered when emergent and rapid fluid removal is needed or when pharmacological therapies have failed³

- 1. Claure-Del Granado R, Mehta RL. BMC Nephrol. 2016;17(1):109.
- 2. Murugan R, et al. Blood Purif. 2016;42(3):266-78.
- 3. Rosner MH, et al. Br J Anaesth. 2014 Nov;113(5):764-71..

Choice of Appropriate RRT Modality

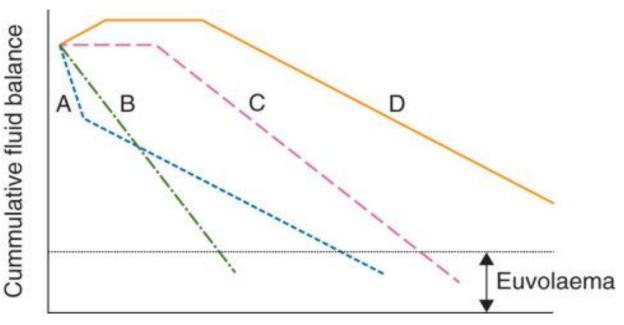
Considerations¹⁻³

- Total amount of fluid required to be removed to achieve clinical goals
- Rate at which fluids need to be removed
- Ongoing fluid administration needs
- Patient's illness and comorbidities
- Patient's hemodynamic status
- Need for solute removal, electrolyte correction or control of uremia
- Available resources and expertise


Image source: Ostermann M, et al. Blood Purif. 2016;42(3):224-37

- 2. Rosner MH, et al. Br J Anaesth. 2014 Nov;113(5):764-71.
- 3. Bagshaw SM, et al. Intensive Care Med. 2017 Jun;43(6):841-854.

^{1.} Ostermann M, et al. Blood Purif. 2016;42(3):224-37.


Plasma Refilling Rate and Hemodynamic Stability

- During RRT, fluid is primarily removed from the intravascular compartment¹
- The rate of change in intravascular blood volume is determined by plasma refilling rates from the interstitial compartment¹
- When the rate of fluid removal exceeds that of plasma refilling, the decrease in circulating blood volume can lead to hemodynamic instability, hypotension and hypoperfusion¹
- A slow, sustained rate of fluid removal allows time for vascular refilling and promotes hemodynamic stability^{1,2}
 - 1. Murugan R, et al. Blood Purif. 2016;42(3):266-78.
 - 2. Rosner MH, et al. Br J Anaesth. 2014 Nov;113(5):764-71

Optimal Fluid Removal Rate

- Safe rate of fluid removal varies by patient condition and may change over the course of treatment
- The rate at which fluid should be removed requires consideration of
 - Expected fluid inputs and losses
 - Expected speed of vascular refilling
 - Patient's physiological tolerance to transient reduction in intravascular volume
- Slow, sustained fluid removal is more likely to achieve net negative fluid balance with greater hemodynamic stability

Rapid early fluid removal may be indicated in cardio-renal syndrome but a slower removal may be required for hemodynamic tolerability after resolution of pulmonary edema $(A)^1$

Patients with single organ renal failure (B) may tolerate more rapid fluid removal than those with AKI complicating severe sepsis (C) or septic shock (D) 1

Monitoring Patient Fluid Status

- Meticulous monitoring of patient fluid status is critical for effective fluid removal¹
- Fluid losses or gains outside the control of RRT treatment system must be accounted for²
 - IV fluids, nutrition, medications, blood products
 - Urine output, drain outputs
- Patient fluid status is monitored by²
 - Accurate charting of all fluid intakes and outputs
 - Daily weighing
 - Physical assessment
 - 1. Claure-Del Granado R, Mehta RL. BMC Nephrol. 2016;17(1):109.
 - 2. Rosner MH, et al. Br J Anaesth. 2014 Nov;113(5):764-71.

Continuous Renal Replacement Therapy for Fluid Management

Advantages of CRRT for Fluid Management

Hemodynamic stability

 Slow, gradual fluid removal allows adequate time for the vascular space to refill, reducing the impact on hemodynamics and organ perfusion

Precise fluid balance control

- Accurate measurements of fluid removal and infusion volumes help facilitate precise control of patient fluid balance
- Flexibility to tailor treatment to clinical needs
 - Continuous and gradual process allows fluid removal rates to be customized to varied clinical scenarios and fine-tuned on an ongoing basis

Effectiveness

Precision

Flexibility

Guidelines: CRRT for Hemodynamic Stability

Acute Dialysis Quality Initiative (ADQI)¹

"Continuous types of RRT are recommended in situations where shifts in fluid balance and metabolic fluctuations are poorly tolerated."

Kidney Disease | Improving Global Outcomes (KDIGO)²

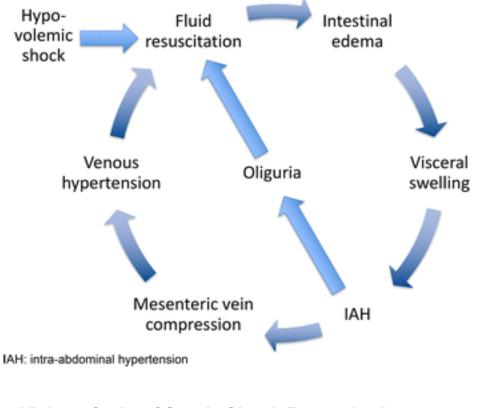
"We suggest using CRRT, rather than standard intermittent RRT, for hemodynamically unstable patients."

Surviving Sepsis Campaign (SSC)³

"We suggest using CRRT to facilitate management of fluid balance in hemodynamically unstable septic patients."

^{1.} Ostermann M, et al. Blood Purif. 2016;42(3):224-37.

^{2.} KDIGO Acute Kidney Injury Work Group. Kidney Int Suppl. 2012;2(1):1-138.


^{3.} Rhodes A, et al. Intensive Care Med. 2017 Mar;43(3):304-377.

Fluid Overload: Septic Shock

Fluid Overload in Septic Shock

Causes of fluid overload

- Initial fluid resuscitation aimed at restoring intravascular volume
- Administration of large volumes of fluid as drug diluents, artificial nutrition and maintenance fluids
- Further fluid administration to counter relative hypovolemia resulting from capillary leak
- Interstitial edema induces organ dysfunction that contributes to further fluid accumulation

Vicious Cycle of Septic Shock Resuscitation

Malbrain MLNG, et al. Ann Intensive Care. 2018 May 22;8(1):66.

RRT in Septic Shock

- Aggressive fluid removal can cause hemodynamic deterioration, which may result in hypoperfusion and worsening organ failure¹
- Slow, continuous removal of fluid supports hemodynamic stability¹
- Sepsis clinical guidelines recommend use of CRRT in hemodynamically unstable patients²

2. Rhodes A, et al. Intensive Care Med. 2017 Mar;43(3):304-377.

^{1.} Murugan R, et al. Blood Purif. 2016;42(3):266-78.

Fluid Overload: Acute Decompensated Heart Failure

Volume Overload in Acute Decompensated Heart Failure

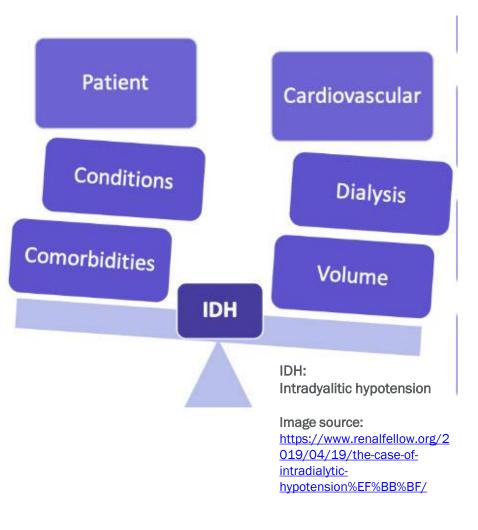

- Congestion is the primary reason for hospitalization in patients with acute decompensated heart failure¹
- Diuretic resistance is common in advanced heart failure and limits the efficacy of fluid removal by medical management alone²
- Nearly 40% of patients treated with conventional diuretic-based regimens still have congestive symptoms at discharge¹
- Incomplete decongestion is associated with increased post-discharge events and hospital readmission³
- 2013 ACCF/AHA guideline for the management of heart failure recommend that RRT be considered in patients with obvious volume overload, diuretic resistance and/or impaired renal function⁴
 - 1. Kazory A, Costanzo MR. Adv Chronic Kidney Dis. 2018 Sep;25(5):434-442.
 - 2. Costanzo MR, et al. J Am Coll Cardiol. 2017 May 16;69(19):2428-2445.
 - 3. Muñoz D, Felker GM. Curr Cardiol Rep. 2013 Feb;15(2):335.
 - 4. Yancy CW,et al. J Am Coll Cardiol. 2013 Oct 15;62(16):e147-239.

Image source: Cardiac Failure Review 2018;4(1):38–42.

RRT in Acute Decompensated Heart Failure

- Multiple trials have demonstrated the detrimental effect of hypotension in ADHF¹
- Maintenance of hemodynamic stability is key to avoiding hypotension and worsening renal function¹
- Desirable volume status should be achieved without causing a rapid reduction in intravascular volume¹
- CRRT results has demonstrated improved hemodynamics and better fluid balance control compared with intermittent RRT²

1. Teerlink JR, et al. Curr Cardiol Rev. 2015;11(1):53-62.

2. Claure-Del Granado R, Mehta RL. BMC Nephrol. 2016;17(1):109.

Prismaflex CRRT System

PRISMAFLEX CRRT System

Highly accurate, scale-based fluid management system

- Fluid removal accuracy is provided through algorithms and self-calibrating fluid scales
- Monitors accumulated fluid balance/imbalance and adjusts accordingly to help reduce risk of patient injury
- Allows for easier dose tracking

Scale-based system enables accurate fluid management

https://www.baxter.com/sites/g/files/ebysai746/files/2017-11/Prismaflex-07.11-Brochure-New_Accts.pdf

Summary and Conclusions

Summary and Conclusions

- Optimizing fluid balance in the ICU is challenging
- Fluid accumulation and overload are common in critically ill patients
- Fluid overload is associated with increased morbidity and mortality
- Effective fluid management strategies can help mitigate fluid accumulation and improve outcomes
- Diuretic resistance and acute kidney injury may limit the efficacy of medical diuresis
- Renal replacement therapy may be considered to help achieve fluid removal goals
- Hemodynamic stability is essential to preserving organ perfusion and optimizing recovery
- Fluid removal with CRRT is slow and sustained, and has demonstrated hemodynamic tolerance
- CRRT may facilitate precise control over patient fluid balance by enabling accurate, ongoing measures of fluid removal and replacement volumes
- CRRT allows customization of fluid removal rates to varied clinical scenarios and changing patient needs¹
- Fluid inputs and outputs outside the CRRT system must be accounted for during treatment
- CRRT is the suggested modality for mechanical fluid removal in hemodynamically unstable patients with considerable fluid accumulation^{2,3,4}
 - 1. Murugan R, et al. Blood Purif. 2016;42(3):266-78.
 - 2. Ostermann M, et al. Blood Purif. 2016;42(3):224-37.
 - 3. KDIGO Acute Kidney Injury Work Group. Kidney Int Suppl. 2012;2(1):1-138.
 - 4. Rhodes A, et al. Intensive Care Med. 2017 Mar;43(3):304-377.

References

USMP/MG120/19-0021 08/19

References

- Bagshaw SM, et al. Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Intensive Care Med. 2017 Jun;43(6):841-854.
- Bouchard J, Mehta RL. Volume management in continuous renal replacement therapy. Semin Dial. 2009 Mar-Apr;22(2):146-50.
- Claure-Del Granado R, Mehta RL. Fluid overload in the ICU: evaluation and management. BMC Nephrol. 2016;17(1):109.
- Costanzo MR, et al. Extracorporeal Ultrafiltration for Fluid Overload in Heart Failure: Current Status and Prospects for Further Research. J Am Coll Cardiol. 2017 May 16;69(19):2428-2445.
- Frazee E, Kashani K. Fluid Management for Critically III Patients: A Review of the Current State of Fluid Therapy in the Intensive Care Unit. Kidney Dis (Basel). 2016 Jun;2(2):64-71.
- Godin M, et al. Fluid balance in patients with acute kidney injury: emerging concepts. Nephron Clin Pract. 2013;123(3-4):238-45.
- Kazory A, Costanzo MR. Extracorporeal Isolated Ultrafiltration for Management of Congestion in Heart Failure and Cardiorenal Syndrome. Adv Chronic Kidney Dis. 2018 Sep;25(5):434-442.
- Kellum J, et al. The first international consensus conference on continuous renal replacement therapy. Kidney Int. 2002 Nov;62(5):1855-63.
- Kelm DJ, et al. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock. 2015 Jan;43(1):68-73.
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1-138.
- Malbrain MLNG, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care. 2018 May 22;8(1):66.
- Mehta RL. Challenges and pitfalls when implementing renal replacement therapy in the ICU. Crit Care. 2015;19 Suppl 3:S9.
- Muñoz D, Felker GM. Approaches to decongestion in patients with acute decompensated heart failure. Curr Cardiol Rep. 2013 Feb;15(2):335.
- Murugan R, et al. Precision Fluid Management in Continuous Renal Replacement Therapy. Blood Purif. 2016;42(3):266-78.
- O'Connor ME, Prowle JR. Fluid Overload. Crit Care Clin. 2015 Oct;31(4):803-21.
- Ogbu OC, et al. How to avoid fluid overload. Curr Opin Crit Care. 2015 Aug;21(4):315-21
- Ostermann M, et al. Patient Selection and Timing of Continuous Renal Replacement Therapy. Blood Purif. 2016;42(3):224-37.
- Rhodes A, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017 Mar;43(3):304-377.
- Rosner MH, et al. Indications and management of mechanical fluid removal in critical illness. Br J Anaesth. 2014 Nov;113(5):764-71.
- Scales K, Pilsworth J. The importance of fluid balance in clinical practice. Nurs Stand. 2008 Jul 30-Aug 5;22(47):50-7; quiz 58, 60.
- Teerlink JR, et al. Acute decompensated heart failure update. Curr Cardiol Rev. 2015;11(1):53-62.
- Yancy CW, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013 Oct 15;62(16):e147-239.
- Zhang L, et al. Associations of fluid overload with mortality and kidney recovery in patients with acute kidney injury: A systematic review and meta-analysis. J Crit Care. 2015 Aug;30(4):860.e7-13.

Rx Only. For the safe and proper use of the devices mentioned herein, please refer to the appropriate Operator's Manual.

Baxter and Prismaflex are trademarks of Baxter International Inc.